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If the units building up a three-dimensional lattice have different sizes and/or shapes and a~e randomly 
distributed the long-range order of the point lattice is destroyed. The integral widths ~b of the 
Debye--Scherrer lines increase quadratically with sin 0 for a given set of netplanes. Studying the 
slopes for the reflexions h00, hhO and hhh one obtains quantitative information on the paracrystalline 
distortions in the lattice. In the present paper these slopes are calculated for p.c., b.c.c, and f.c.c. 
lattices and identical coordination statistics with cylindrical symmetry and two fluctuation parameters 
ct,B. The slopes can be conveniently normalized to the fluctuation dxa of a lattice cell. In a logarithmic 
dx~ v e r s u s  fl2/(0c2-~-f12) plot of all these types of paracrystalline lattices, observed dxa values of man- 
ganese-rich spinels are fitted as well as possible. A body centred paracrystalline lattice is observed 
with ~[/~= 0.7 +_ 0.1. This example may illustrate how to analyse reasonably paracrystalline lattices. 

1.  I n t r o d u c t i o n  

Under certain circumstances in solid state physics com- 
pounds exist which are crystal-like but have lost the 
long range order of the lattice points. Within a crystal- 
line lattice the nth neighbour in the direction of the 
lattice constant ar can be found at Xrn=nar+_OXrn. 
OXrn is of the order of 0.3 ,~ or less and depends on the 
amplitude of thermal vibration. Hence the whole 
probability function, z(x), of the lattice points is a 
lattice point function (Ewald, 1940), where the points 
are somewhat smeared out by the distance statistics, 
He(x), of thermal vibration. A single atom n displaced 
by Oxn from its ideal position has now a priori another 
distance statistic relative to all other atoms such as the 
atom m with a displacement 6Xm, if 6Xm # Oxn. 

In Table 1 + denotes a crystal which has both 
lattice and long range order, and - denotes a crystal 
where the single lattice points have not the same a 
priori distance-distribution. 

In the conventional theory of liquids of Ornstein & 
Zernike (1918), Zernike & Prins (1927) and Debye 
(1927) no lattice is discussed, all atoms having the 
same distance statistics (pair distribution functions) 
with respect to the other atoms and, as a consequence, 
long range order is lost. Hence in Table 1 the signs of 
the last column are opposite to those of the first. 

The concept of a paracrystal (Hosemann, 1950a) 
introduces the possibility of solid or liquid structures 
existing within the limits of paracrystals. The lattice 
function z(x) is now defined by a three-dimensional 
convoluting polynomial (see, for details, Hosemann & 

Bagchi, 1952, 1962). The fluctuation widths 6Xr, n are 
now proportional to l/n. So from a certain distance, 
6Xr, n and 6Xr, n+l are so large that the distance stati- 
stics of adjacent lattice points totally overlap and the 
long range order is lost. Only for the special case of 
point-like next neighbour distance statistics z(x) de- 
generates to the well known lattice point function of 
crystals (Ewald, 1940). In the second line of Table 1 the 
+ - sign in the second column indicates that the para- 
crystalline theory contains the concepts of both crystals 
and liquids with regard to the existance or nonexistance 
of long range order. 

As long as z(x) is defined by a convoluting polyno- 
mial all lattice points have the same a priori distance 
statistics ( +  sign in column 2) but on the introduction 
of lattice vibrations other than paracrystalline distor- 
tions this is no longer valid. Hence both possibilities 
( +  and - )  (the same or not the same distance stati- 
stics) have been considered in the theory of paracrystals. 

The last line of Table 1 shows that the atomic den- 
sity distribution of a conventional liquid is taken to be 
spherically symmetric, while from the theory of para- 
crystals the possibility is introduced of analysing such 
distance statistics in terms of paracrystalline microdo- 
mains with very small lattice compounds ( -  sign). 
Averaging over all atoms of the liquid the expected 
value of the distance statistic of the liquid becomes 
spherically symmetric, as in an isotropic crystalline 
powder (+  sign). 

The question is whether or not the mathematical ap- 
proach is somewhere realized in nature. The first ex- 
amples found were the macro-lattices of biological 

Table 1. Notation for 

Concept 
Lattice 
Long range order 
Same a priori distance statistics 
Spherically symmetric distance distribution 

the extent of order 

Conventional Conventional 
crystal Paracrystal liquid 

+ + - 
+ 4--  - 
- - 4 -  4- 
- - 4 -  4- 
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fibres (Hosemann, 1950b) and later the molecular 
lattices of synthetic fibers (Hosemann, Balta-Calleja 
& Wilke, 1966) and atomic lattices in the ammonia 
catalyst (Hosemann, Preisinger & Vogel, 1966). The 
more Debye-Scherrer lines could be studied, the more 
interesting it became to find an adequate technique 
for evaluating the paracrystalline distortions from line 
broadening. The following sections give some results of 
these studies (cf. Vogel, 1967). 

2. Basic equations 

According to the theory of paracrystals by Hosemann 
& Bagchi (1962) the integral width 6b of a certain De- 
bye-Scherrer line hkl (netplane distance d) and its 
higher orders increases quadratically with the distance 
b in reciprocal space 

6b = rc2dnetg~,ktb 2 (1) 
with 

b=(s-s0) /2 ,  b = 2  sin 0/2. (2) 

s, s0 are unit vectors in the direction of the primary and 
scattered beams, 0 is the Bragg angle and 2 is the wave 
length, ghkt is the relative paracrystalline distance 
fluctuation of the family of netplanes {hkl} (bars de- 
note average values) 

g~kl= ( ~ Z  d2/d. (3) 

This characteristic line broadening occurs if the nearest 
neighbour distances a~ in the lattice are given by a 
priori probability functions Hk(x) which are not point- 
like, and fluctuate without statistical correlation with 
each other. The distance statistics between two lattice 
points (000), (p, q, r) can then be described by a convo- 
luting product of the nearest neighbour's distance 
statistics Hie(x)* (k = 1,2, 3) 

p t i m e s  q t i m e s  r t i m e s  
, ~, ^ , • ,~ ,~ ~ 

Hpqr(X)='P H1HI...  HIH2H2... H2H3H3... H3. (4) 

P is a pointfunction at x = 0  (Dirac's delta function). 
The mean distance vector, dr, of the so-called coordi- 

nation statistic Hr and its statistical fluctuation, Axr~, 
in the direction of the unit vector s~ is defined by 

fir= f xHr(x)dvz; 
(5) 

(. 

A2xri = I (x.  s02Hr(x +Sr)dvx • 

If the ~r are orthogonal as in the p.c. lattice, then the 
fluctuation of H~,qr in the direction i is given by 

A2x~qr~ =pA2xli + qA2x2~ + rA2x3~ . (6) 

* This corresponds to the model of an 'ideal paracrystal', 
which neglects correlations between the different Hr(x). 

J... 1-12 H2 

a) b) c) 

I 

Fig. 1. Coordination statistics of the same shape in a primitive-cubic lattice cell; (a) rod-like, (b) sphere-like, (c) disc-like. 

001 In 

000 II0 
Fig.2. The fluctuation parameters, ~, fl, of a coordination statistic with cylindrical symmetry in a b.c.c, lattice cell. 



274 E V A L U A T I O N  OF P A R A C R Y S T A L L I N E  D I S T O R T I O N S  FROM LINE B R O A D E N I N G  

According to the nature of the convolution operation 
H.~qr(X) becomes more and more broadened with in- 
creasing [Pl, Iql, Ir[; this means that the long range 
order is disturbed (Table 1). 

The Bragg-like intensity is then proportional to the 
paracrystalline lattice factor (Hosemann & Bagchi, 
1962) 

3 1 + Fr(b) 
Z(b) = H Re - - -  . (7) 

r=I 1 -Fr(b)  

The Fr(b) are called 'statistical amplitudes' and are the 
Fourier transforms of the Hr(x)" 

Fr(b) =~-Hr(x) (~-" Fourier transform operator). (8) 

In a primitive cubic lattice the Hr(x) of the paracrystal- 
line lattice are given by the cell edges at. For b.c.c, and 
f.c.c, lattices the ar between next-neighbours are given 
by the vectors from 000 to ~z½ and 000 to 0~_ respec- 
tively. 

Since the coordination statistics Hr(x) have a physi- 
cal meaning (they describe the statistical properties of 
chemical binding between next neighbours) the para- 
crystalline lattice cell can no longer be described by 
the conventional b.c.c, and f.c.c, lattice cells. 

It is important to realize that from a quantitative 
study of paracrystalline distortions one can obtain 
directly the information: which atoms are the next 
neighbours and which atoms form the distorted lattice. 
This will be demonstrated in {} 4. 

The gn~z values defined by (3) depend on the order 
of reftexion. For the 2h 2k 2l reflexion for instance, 
according to (6) the netplanes are separated by d/2; 
their fluctuation is 

1 
V2 ~/d~-d2 hence gZhZk2 l= l/2ghkt . (9) 

In this way it is possible to transform all gnkt values 
of the different families of netplanes to those of fami- 
lies with the same netplane distance a: if Axa and ga 
are the respective fluctuations, one obtains 

A 2 x a = ( d z - d z ) a / d ;  

dXa/a = ga = ga~zVd/a ; (1 o) 

fib = 7~2/a 3 . d 2 x a h  2. 

(h is the order of reflexion). 
As will be shown below there is a characteristic 

mutual dependence of the ga values for the (100), 
(110), (111) netplanes which permits one to obtain in- 
formation on the d X r i  values [equation (5)] and hence 
the type of Bravais lattice (see below). 

For a finite crystal, introducing the shape function 

1 inside the crystal (11) 
s(x) = 0 outside the crystal 

and its Fourier transform 

S(b)=.~s(x) (12) 
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we obtain for the Bragg-like intensities the convolu- 
tion product" 

l ( b )  ,.,., Z(b) IS (b ) l  2. (13) 

The 'shape factor' [S(b)l 2 alone gives a new line 
broadening, fibsize, independent of the order of re- 
flexion: 

5bsize = 1/L (14) 

where £ is the mean linear crystallite size perpendicular 
to the reflecting netplane. As a result of the convolu- 
tion product (13), the integral widths (10) and (14) sum 
in different manner, depending on the shapes of the 
two functions Z(b) and IS(b)[ z. Since the shape for 
Z(b) is always a 'Cauchy-like' functionf(b) ~ 1/( 1 + k2b 2) 
we may write" 

1 
fib = -£  + ~2gZ~,fi~g~bZ 

(15) 
1 7~ 2 

= --=- + A2xah  z 
L a 3 

if the shape factor itself does not deviate too much 
from a Cauchy function. Integral widths of Cauchy 
functions sum linearly on convolution. 

Equation (15) often holds to within the measure- 
ment errors if pure size broadening is low compared 
with paracrystalline broadening, especially for the high 
order reflexions (large h). 

1 
In a plot of fib versus h 2, for fib>> -[, we should ob- 

tain practically straight lines for reflexions which are 
parallel in the reciprocal lattice. These lines differ in 
slope, for instance for OOh or Ohh or hhh type reflexions, 
depending on the shape of the coordination statistics 
Hr(x) and the lattice type. Examples are given below. 

3. The calculation of J b - h  2 plots for different lattice 
types and shapes of coordination statistics 

Beginning for convenience with a onefold primitive 
lattice we discuss these important cases (Fig. 1), when 
all the coordination statistics Hr have the same shape. 
Let Axr~ again be the standard fluctuation of the lattice 
cell edge ar in the direction of si (equation 5), then 

rod-like means: Axr~ ~ Axrr (i v ~ r) 
globular means: Axrl ~ Axr2 "~ AXr3 (16) 
disc-like means: Axri>~Axrr ( i # r )  . 

Equal shapes of all Hr(x) means that 

Axr ,= [ 0c for i = r  (17) 
/ flfor i # r .  

Fig. 1 gives an example for p.c. lattices. 
To calculate the slopes of the integral width 6b of a 

certain family of reflexions from the A2xrl values, we 
start with a lattice point xmp2~ 3 which lies on the nor- 
mal to the family of netplanes (hlh2h3) under considera- 
tion: 

Pl =h l ;p2=h2;  p 3 = h 3  • 

Let Sh be an unit vector perpendicular to the netplane 
(hzh2h3) and a the length of the cubic lattice cell, then 

h= Vhf 
The squared standard deviation of xh~h2h3 in the direc- 
tion of sh is then, according to equation (5), given by 

A2Xhlh2h3 = I (X . Sl~)2ghlh2h3(X + Xh! h2h3)dVx, 

A2Xhlh2h3 = - ~  (Xlh l  -t-x2h2-l-x3h3) 2 

x Hhl~Eha(X + ahsh)dVz. 

Since ~ XiXrHhzh2ha(X +ahsh)dVz = 0, if i-¢ r, the bracket 
,) 

ib pc ,[b bcc "t b f cc 

,,[b 

~ oah 

D.tt 2 

t, bcc ~ o o h  ~ f c c 

lt, pc fcc 

ohh o~ 

~h 2 

Fig. 3. Relative slopes of line widths b~ in a (~b-h 2 plot for different lattice types and cylindrical symmetric coordination statistic 
shapes. A mean broadening &bsiz~ has been added according to equation (l 5). 
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pc 

} 

- >  

bcc fcc 

oo^  

< 
a b 

p~ pz 

W g .  - *  . . . . . . .  
02  0 ,; 0.6 0~1 10 O, ~ 04 0.6 0.8 f.O O~ OA 0.6 0.$ tO 

Fig.4. The normalized fluctuations Ax,~ (equation 10) of the netplanes (h00), (hhO), and (hhh) calculated for different lattice types 
and e, fl-values of coordination statistics. The observed values of a manganese-rich spinel are fitted into the respective plots as 
well as possible. 

can be replaced by 2 2 2 2 2 2 . (xxh 1 + x2h 2 substi- + x3h3). Now 
tuting equation (6) we get" 

1 
A2x~th2~3 = h- z ~ Z h~hrNxri; (18) 

for like-shaped coordination statistics especially one 
obtains from equation (17): 

A2Xhlh2h3=h [ o~2 ( h3q-h3~-Fh] 

+flzJhx+hz+h~ h~+h~+hl[] (19) 
........ // " . . . .  -lJ " 

According to equation (I0) the slope of the integral 
width fib of order parameter h is proportional to 

a 
,42Xa - -  

Xh lh2h3  

Hence from (19) one obtains 
= +hlh  +hl ) 

_~ fl2 (.hl.-~ ~ "~ h3 

1 
- - - -  A2Xhlh2h3-~ -~ A2Xhlk2h3 . 

h3 ) .  (20) 

The expressions inside the brackets are angle-de- 
pendent factors of order of magnitude 1. 

Equation (20) is built on the statistical fluctuations 
Axrr, Axr~ of the conventional lattice cell a. As men- 
tioned above, in non-primitive paracrystaUine lattices 
the coordination statistics Hr(x) are given by next- 
neighbour statistics and not by those of the conven- 
tional cell edges. For a body centred cubic lattice 
(b.c.c.) for instance, the next neighbours lie at -}2-}22-}, 

- , ~ ,  _ 

hence the cell-edge statistic Hool is given by H~4zH½z~2, 
and so on. 

Introducing the e,fl-values of the coordination sta- 
tistics defined by (17) one obtains for the fluctuation 
A2X33 of the conventional cell edge (see Fig. 2) 

A 2 x 3 3 = 2  . (f12 COS 2 ~_J_0~2 s i n  2 ~,) (21) 

* We propose a centre of symmetry for the fuctions Hr(r). 
The same is then true for Hpqr(X). 

where sin ~,= 1/1/3. In Table 2 the dependence of the 
fluctuation of the conventional lattice edges, body 
diagonals and face diagonals from those of the coordi- 
nation statistics is given for p.o., b.c.c, and f.c.c. 
lattices. 

4. Analysis of the paracrystalline lattice type and 
the shape of the coordination statistics 

Since according to equation (15) the slope of the line 
width in a 6 b - h  2 plot is proportional to AZxa, such 
plots can easily be constructed for given lattices and 
coordination statistic shapes: Fig. 3 gives an example 
for rod-like, sphere-like, and disc-like coordination 
statistics. The relative fluctuations of the coordina- 
tion statistics have been chosen as follows: 

Rod o~ldr = 1% fl/Sr = 0 
Sphere ocISr = 1% fl/ar = 1% 
Disc o~ldr=O fllSr= 1 

If the statistics are sphere-like, we see that those net- 
planes belonging to next neighbours (h00 for p.c., hhh 
for b.c.c, and hhO for f.c.c.) have the smallest slope. 
Thus, from a study of line broadening information on 
the lattice type can be obtained if the shape of the 
coordination statistics is known. 

In order to analyse both the lattice type and the shape 
of the statistics Axa is plotted on a logarithmic scale 

against az~-fi2 (Fig.4). As an example the observed 

Axa values for the three families of netplanes (h00) 
(hhO) and (hhh) of a manganese-rich spinel are moved 
over the graph till they fit the calculated curves as well 
as possible. The procedure does not depend on the ab- 
solute values of the paracrystalline distortions but only 
on the relative values between the single netplanes. 
There are two possibilities: 

1. Lattice: primitive cubic; coordination statistics: 
rod-like ( f l ~ ) .  But as can be seen in Fig.4, the ob- 
served values do not fit the calculated curves within the 
experimental error. Hence, this solution is improbable. 
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f1 2 
2. Lattice" body centred cubic; (X2_~..~ 2 =0.65 +_0.1, 

- -  N 0 . 7 _ 0 . 1 .  

Hence the next neighbours (bricks) are placed along 
body diagonals. The fluctuation is less parallel to their 
mean coordination vector (20 XU) and greater at right 
angles to it (28 XU). (e<fl ,  see Fig.2). It is known, 
that in a spinel oxygen ions build up a close packed 
f.c.c, lattice; the small spaces at tetragonal and octa- 
hedral sites between these large anions are filled up by 
the small cations. In the manganese-rich spinels under 
consideration obviously the cations in octahedral posi- 
tions make 'bricks' with the surrounding oxygen ions 
and these molecular bricks themselves make up the 
crystalline lattice. 

In another paper* the results from these spinels are 
dealt with in detail. The aim of the present paper is to 
illustrate that information relevant to the co.acept of 
paracrystals is available from line profile analysis. 

* Cervinka, Hosemann & Vogel (1970). 

The authors wish to thank the Deutsche Forschungs- 
gemeinschaft and the Senat yon Berlin for supporting 
this work from the ERP funds. 
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ParaerystaUine Lattice Distortions and Mierodomains in Manganese Ferrites 

near the Cubie-to-Tetragonal Transition 
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The line profiles of X-ray reflexions from different Mn,~Fe3-,,O4 samples were investigated. Sample I 
(x= 1.66) is cubic with no anomalies; small paracrystalline distortions, g < 0.1%, cannot be excluded 
and are calculated to be of this magnitude from considerations of a simple volume effect of the larger 
Mn3+ ions. Samples II-IV (x= 1.88) show interesting effects which are closely connected with the 
development of the tetragonal structure, observed when x > 1"80. Sample II (quenched) shows para- 
crystalline distortions which can be quantitatively explained on the basis of the Jahn-Teller effect" 
the tetragonally deformed single Mn3+O~- octahedra are statistically oriented and statistically dis- 
tributed over B sites and have a mean tetragonality ~=0.014. In sample III (cooling rate 20°C.min -a) 
about 26% of the volume consists of microdomains which result from a correlation between the orien- 
tations and positions of Jahn-Teller octahedra; quantitative agreement with the theory can be obtained 
by introducing a correlation factor y = 2. In sample IV (cooling rate 7°C.min -x) this correlation pro- 
ceded in such a way that the crystal consisted of 74% tetragonal matrix which had already attained 
a value of e/a= 1.056, and about 22% of tetragonal microdomains oriented in two other directions 
with a value c/a < 1"056. In addition about 3 to 5% of a cubic phase is present. If the mean tetragonality 
of the microdomains is taken to be ~ = 0.020 the experiments correspond quantitatively with the theory. 
The detailed study of sample III proves that H+ ÷ ÷ are the paracrystalline coordination statistics with a 
fluctuation ~= 27 XU in the direction [111] and P= 38 XU perpendicular to it. This is explained by a 
model of the spinel structure having two kinds of blocks" a tetrahedral A-structure and Jahn-Teller 
affected octahedral subcubes at B sites; the separation distance is ¼g3a= 3.7/~. 

1. Introduction cubic lattice of the MnxFe3-xO4 system ((~ervinka, 
Krupi6ka & Syne6ek, 1961; Cervinka, 1965). This 

It has been proved that tetragonally distorted octa- can be explained quantum mechanically by Mn 3+ ions 
hedra of Mn3+O62- exist locally in the macroscopic in an octahedral environment of 0 2- anions. The eigen- 


